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Figure 1: AI-inferred group membership in a dataset of more than 25 million facially de-identified dashcam images from NYC
in 2023. A project website is available at dsi.tech.cornell.edu.

ABSTRACT
Spatially and temporally dense street imagery (DSI) datasets have
grown unbounded. In 2024, individual companies possessed around
3 trillion unique images of public streets. DSI data streams are only
set to grow as companies like Lyft and Waymo use DSI to train
autonomous vehicle algorithms and analyze collisions. Academic
researchers leverage DSI to explore novel approaches to urban
analysis. Despite good-faith efforts by DSI providers to protect in-
dividual privacy through blurring faces and license plates, these
measures fail to address broader privacy concerns. In this work,
we find that increased data density and advancements in artificial
intelligence enable harmful group membership inferences from
supposedly anonymized data. We perform a penetration test to
∗The authors contributed equally to this research.
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demonstrate how easily sensitive group affiliations can be inferred
from obfuscated pedestrians in 25,232,608 dashcam images taken in
New York City. We develop a typology of identifiable groups within
DSI and analyze privacy implications through the lens of contex-
tual integrity. Finally, we discuss actionable recommendations for
researchers working with data from DSI providers.
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1 INTRODUCTION
Dense Street Imagery (DSI) represents a major breakthrough in
vehicle hardware, imaging technology, and networking, enabling
dynamic, real-time depictions of locations worldwide. Unlike tra-
ditional static snapshots, such as those provided by Google Street
View, DSI capitalizes on innovations in temporal density—achieved
through networked dashcams [42] and advanced driver-assist sys-
tems [59] to deliver fresh, continuous imagery at an unparalleled
frequency. Researchers have found many beneficial applications of
DSI; these include tracking transient weather events [43, 103], doc-
umenting sidewalk scaffolding [95], analyzing vehicle placement
patterns [45], and assessing dynamic streetconditions [31, 44]. By
transforming mobile cameras into a distributed sensing network,
DSI offers researchers newways to understand the rapidly changing
physical and social landscapes of urban environments in ways that
are more flexible and adaptable than possible with location-fixed
sensing systems.

The shift from periodic to near-continuous image capture has
made it possible to monitor people at much shorter intervals; cycles
that were once difficult or even impossible to observe. Unlike Google
Street View (GSV), which faced several privacy controversies in the
early 2000s, DSI has so far avoided similar public scrutiny. In the
2014 Canadian case Pia Grillo v. Google, the plaintiff sued Google
for invading her privacy after Google Street View (GSV) published
an image of her outside her home in Quebec [21, 47, 65]. Although
GSV had blurred her face, it failed to obscure her license plate and
home address, and the photo revealed part of her upper body. The
court found that these visible details could allow others to identify
her, despite the facial blurring. The case highlights how peripheral
information such as license plates and addresses can undermine
anonymity, even when facial features are obscured.

Today, an expansive infrastructure has emerged in which compa-
nies likeMobileyemanage vast datasets (reportedly 200 petabytes of
data) [77], comprising over 3 trillion images from cameras mounted
on consumer vehicles [56]). Lyft, a leading ride-sharing company,
also recently gained access to 200 million miles of driving im-
agery [56]. For reference, Google reported its Street View had 220
billion images and 10 million miles of footage in 2022. DSI has,
without much notice, assembled a data moat more than ten times
the size. Recent research by Sandhaus et al. [93] reveals that au-
tonomous vehicle companies possess vast amounts of DSI data;
while they are reluctant to share it openly, they have sophisticated
internal methods to remotely retrieve data from their fleets. How
can individuals escape the surveillance potential inherent to DSI?
Increasingly, it seems that to opt out, one must opt out of public
space [53]. Privacy defenses for sensitive objects in DSI include
the blurring of faces, license plates, and other user-requested ob-
jects. Such practices have precedents in earlier technologies like
Google Street View [6]. Google states: “We have developed cutting-
edge face and license plate blurring technology that is designed to
blur identifiable faces and license plates within Google-contributed
imagery in Street View” [52]; this seems to be the commercially-
standard protection standard [46]1. Privacy-preservingmechanisms

1We note that at the time of writing, Nexar, the provider of our experimental dataset,
goes beyond the popular commercial standard by blurring entire pedestrian figures
instead of just faces (see Figure S1 for an example). However, this practice reduces

for static street view technologies, including blurring faces, license
plates, and other user-requested objects, are inadequate and notably
blunt [20], and obfuscation failure modes are noted and exist [20] –
see Appendix C for details on specific failure modes. The inevitable
increase in temporal density further undermines these established
mechanisms [42]. Ultimately, in DSI, objects of interest are trace-
able. Additionally, artificial intelligence (AI)’s inferential capabilities
make it possible to generate detailed information without direct col-
lection, for example, using vision models to analyze visual data and
identify individuals’ clothing types, styles, and accessories in public
spaces in near real-time [18, 26]. This allows identification of group
affiliations (e.g., demonstrators, religious congregations, profession-
als) based on attire and accessories. Even without explicit group
markers, physical proximity to others displaying group affiliation
can signal group association [89]. In public spaces, computer vision
models can infer protected attributes like gender through pose es-
timation [63] and disabilities using proxies like wheelchairs [92].
Moreover, cross analyses with mobility data or activity data, such
as pings of individuals’ cell phone location across time, further
motivate privacy risks in DSI. A landmark study analyzing mobility
data for 1.5 million individuals over 15 months revealed that just
four spatiotemporal points were sufficient to uniquely identify 95%
of individuals in the dataset [32]. These results have been repli-
cated in subsequent studies (e.g., [33]) and highlight the significant
surveillance potential of DSI. Why? Data of this nature is highly
sensitive due to the uniqueness of human behavior [53]. DSI — with
its visual dimension — reveals a heightened sensitivity, enabling AI
to make inferences about appearance and behaviors.

This work pioneers the exploration of group identifiability in
public street imagery, leveraging a real-world dataset of 25,232,608
unique dashcam images captured in New York City (visualized in
Figure S3) provided for research evaluation by Nexar, Inc., a dash-
cam manufacturer and smart-mapping startup. We note that this
work does not address the potential identifiability of individuals.
Our study intersects penetration testing, group privacy, and con-
textual integrity to investigate DSI’s implications for society. We
begin with a penetration test of a real-world DSI dataset to demon-
strate how face-deidentified imagery can be circumvented with
ease, revealing artifacts that can lead to group privacy harms. The
results of our penetration test motivate our downstream research
questions.

Next, we present related work, including an overview of DSI-
producing technologies, relevant privacy theory, and examples of
inferences produced by computer visionmodels.We then demarcate
information flows within DSI, using the framework of contextual
integrity. Finally, we discuss and synthesize findings, document
harms, and offer recommendations for DSI data sharing and use
within academia.

2 PENTESTING A DATASET OF DSI FOR RISKS
OF PRIVACY HARMS

We begin by demonstrating how efficiently DSI can be integrated
into an application capable of inferring membership in a group,
all while preserving individual privacy through de-identification.

the visual fidelity and utility of certain pedestrian-dense images, presenting an open
problem.
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How do we define ‘de-identification’? In the context of DSI, de-
identification refers to the visual blocking of elements considered
sensitive, such as blurring all faces in a dataset. DSI data providers
disproportionately rely on facial blurring as a privacy measure be-
cause of its simplicity and extendability across diverse contexts [20].
Building on this, we add that individual, pedestrian-level obfusca-
tion is not enough privacy protection. We examine this assertion
through an approach borrowed from computer security literature,
called penetration testing, or ‘pentesting’ [16]. Penetration testing
typically involves breaching a system to assess the difficulty of do-
ing so. However, Bishop [16] emphasizes that it should also include
a thorough analysis of threats and potential attackers, an approach
that aligns with our later examination of DSI information flows
through the lens of contextual integrity. Rather than assuming the
absence of privacy harms, our work actively identifies them [16].

2.1 Adversarial Methodology
In our penetration test, we define an adversary as an ‘authority,’
such as law enforcement or government officials. Our experiments
utilize a comprehensive dataset of 25,232,608 images collected
across New York City (detailed sampling methodology in Appen-
dix B). From an adversary’s perspective, we identify several methods
using DSI imagery—enabled by recent advances in artificial intelli-
gence—that could potentially harm a group or its members. These
methods are outlined in Table 1 and intended to be illustrative
rather than exhaustive.

Experiment 1. The first experiment starts with the zero-shot
method described in Table 1. To source training data, we conducted
a zero-shot image classification task on 500,000 randomly sampled
images, leveraging vision-language models (VLMs) [87, 109]. Specif-
ically, we used the VLM Cambrian-13B [102] to answer the prompt:
"Is there a food truck in this image?", receiving yes or no answers.
Next, we manually validated the classified positives through human
annotation2. We also report standard model performance metrics
in Section B.1.4. Finally, we trained a series of lightweight YOLOv11
([62]) object detection models and selected the most performant.
These models, capable of real-time and distributed inference, were
chosen to illustrate the ease with which imagery can be transformed
into spatiotemporal distributions of inferred group members. Lastly,
we estimated the spatiotemporal distribution of each group in the
entire dataset of 25,232,608 images by running inferences on each
image with the trained YOLO model. We provide more information
on the training of the YOLO model in Section B.1.2.

Experiment 2. The second experimentmore directly encompasses
the zero-shot method from Table 1. Similarly, we run a zero-shot
image classification task on 500,000 randomly sampled images using
the same VLM (Cambrian-13B). For this task, we asked Cambrian:
“Is there a bike rider with a box on their back in this image?”3. Then,
we took the Cambrian model output as ground-truth and created a
2This task was carried out by a team of human annotators, including two authors of
this paper, both with extensive experience observing the cultural norms and street
activity of New York City.
3We experimented with several different prompts on a small sample of randomly
sampled images and found that Cambrian has little predictive power on domain-
specific terms like ’food delivery worker’ or ’Uber Eats driver’. Consequently, we
prompted for the flagship equipment that food delivery workers wear while biking
around the city: food storage boxes strapped onto the back of a bike.

detection heatmap (see Figure 3). We draw parallels between this
approach and the biased, partially inaccurate machine learning
models that have been deployed in algorithmic policing endeavors
[14, 71, 91]. In the following, we provide information on mobile
food vending and food delivery in New York City.

Figure 2: A map showing reported vending violations against
food truck detections in Jackson Heights, Queens. For higher
precision, we choose a confidence threshold of 0.7, which
yields a precision of 0.90 and a recall of 0.50 on the test set.

We also generate inferences on several other group identities
using the zero-shotmethod fromTable 1, including nurses, religious-
presenting individuals, dog owners, police officers, and protesters,
all shown in Figure 1.

2.1.1 Pentest: Mobile Food Vending and Delivery in New York City.
As of October 2024, Hunter College’s Food Policy Center reports
that the NYC Department of Health has issued around 4,600 food
cart permits and about 500 food truck permits [84]. Cart permits are
in high demand: Thousands of individuals are currently on the NYC
Department of Health permit waiting list [99]. The current popula-
tion of food delivery workers in New York City is estimated to be
between 65,000 and 122,000, many of whom are immigrants [2, 9].
Given their vulnerability in real-world scenarios, we focus our
exploration on mobile vendors and delivery workers, a group fre-
quently targeted by adversaries. In April 2024, a group of vendors
in Brooklyn protested a surge in ticketing, alleging unfair targeting
by the NYPD [99]. Just a few months later, in July, police detained
a vendor who collapsed while handcuffed and required hospitaliza-
tion [99]. In 2023, the NYPD took street vendors to criminal court
almost six times as frequently as in 2019, issuing over 1,200 criminal
summonses [28]. Food delivery workers are also targeted by various
groups. As early as 2021, The New York Times reported on the theft
of workers’ e-bikes (valued at up to 3,000 USD), highlighting the
need for self-organization [41, 74, 86]. More recently, the NYPD has
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Method Description Example
Zero-shot Inferring images with a foundation model or machine

learning model, and treating its output as ground truth,
without any task-specific labeled data.

Using a web-trained model to identify group in-
stances, e.g., by describing visual characteristics like
"umbrellas" or "LED signs."

Supervised Human generation of training and validation labels,
training a model on these annotations, and treating its
output as ground truth.

Crowdworkers annotate images with labels like
"protesters" or "food vendors," train amodel on these
labels, and then classify new images.

Unsupervised Generating image embeddings from a model, clustering
them, and manually identifying labels for the various
clusters.

Cluster image embeddings, label visual clusters (e.g.,
"colorful trucks"), and apply these labels to all im-
ages in the cluster.

Known-event matching Retrieving images occurring at the same location and
time as a known event, and using the image’s contents
as additional context for an adversarial task.

Manually matching images to a known protest time
and location to interpret the scenes and identify
groups.

Geofencing Retrieving images within a geographic region of inter-
est, and using the contents of those images as additional
context for an adversarial task.

Focusing on a city block known for street vendors,
labeling initial images to define key features, and
then applying those features to identify similar ven-
dors in the area.

Table 1: DSI group identification and retrieval methods. We perform experiments based on zero-shot methods.

Figure 3: Using zero-shot image retrieval, we queried Cam-
brian for the prompt “Is there a bike rider with a box on
their back in this image?”. An authority may readily use this
to create a strategic map for deployment zones optimal for
monitoring food delivery worker hotspots, as depicted. The
computed hotspots correspond to the average ’lunch rush’
period (10AM-2PM) and can be easily computed over each
day within our dataset. From a ground-truth annotation of
500 random positive detections, we estimate precision at 0.70.

cracked down on illegal mopeds, with much of the focus directed
at delivery workers [57].

The 23,000 street vendors in New York City are a particularly vul-
nerable group with the majority of them vending as their primary
source of income. As previously mentioned, these are predomi-
nantly immigrants (96%), and most of them operate in legally gray
areas [94]. Indeed, around 75% of mobile food vendors have no per-
mit [94]. While providing a valuable service to New Yorkers by of-
fering fast, convenient, and affordable goods, these small businesses

operate in a precarious environment, their continued existence re-
liant on the challenges faced by enforcement agencies. While exact
demographic information on food delivery personnel is opaque, we
know that food delivery apps like Uber Eats and DoorDash rarely
comply with governmental requests for information [2].

Our pentest investigates whether adversaries, such as police,
can gain cheap, easy, and more direct access to information about
where and when vendors operate using DSI datasets, even when
individuals are de-identified. Such information poses a significant
threat to the livelihood of these vendors, who already face minimal
job security and ongoing concerns about policing [24]. Thus, sig-
nificant threats to privacy result from the identification of vendors
at the group and community level.

2.1.2 Pentest Execution. Having acquired data representing in-
ferred detections of mobile food vending and food delivery workers,
we now behave as an adversary might, and attempt to measure
the spatiotemporal distribution of these groups in New York City.
We labeled the training data needed for the object detection model
in 4 hours. We trained a high-performance, convergent model in
44 hours. Using this model, we were able to infer 192 images per
second on a single GPU, processing the entire dataset of 25,232,608
images in just 36 hours. Under an optimal confidence threshold of
0.205, the model asserted 196,183 images depicting food trucks. We
show a zoom-in of the Jackson Heights area of Queens in New York
City (see Figure 4 in Supplement), a known hotspot for unlicensed
vending [3].

2.1.3 Pentest Findings. From Experiment 1 we find that out of all
studied food truck vending violations4, the median distance to the
nearest high-confidence model detection is only 127 feet and gets as
near as 36 feet. We find a clear visual overlap between known food
truck vending violations and our high confidence detections, shown
4We assemble a list of all food truck vending violations during our dataset’s coverage
period from NYC OpenData, specifically the NYC Office of Administrative Trials and
Hearings case status dataset [85].
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in Figure 2. This means that, for areas with high concentrations of
food truck vending violations, there is more than ample imagery
with which an adversary could pursue remote inspections, similar
to the methodology in [95].

From the detections of food delivery workers in Experiment 2,
we are also able to easily create targeted deployment zones for the
in-the-wild surveillance of food delivery workers, shown in Figure 3.
These results demonstrate the ease of developing a useful attack
tool against groups with DSI, even under commercially-standard
de-identification.

We have shown the ease of crafting useful attack tools. The ques-
tion remains as to what research applications of DSI are ethical
to pursue. We tackle this question in the paper’s latter sections,
using the contextual integrity framework. We now present a back-
ground and related work section, and then move to our analysis of
information flows in DSI, followed by discussion.

3 RELATEDWORK
This section describes related and contextual work, including an
overview of DSI-producing technologies, the inferential power of
computer vision models, group privacy theory, and the framework
of contextual integrity.

3.1 DSI-producing Technologies
Earlier sensing technologies like Google Street View (GSV) [6] have
been used to computationally characterize longer-term societal pro-
cesses, including gentrification [60, 101], street safety [78], health
outcomes [79], shade from street trees [101], and demographic dis-
tributions [48]. People and people-descriptive objects are visible in
these images. Advances in tools that collect street view imagery
have attracted considerable scrutiny, notably as facial features [50],
vehicle license plates [35], and individual homes [35] become char-
acterizable. As empirical research using GSV has evolved, so has
research focusing on pedestrian obfuscation [39, 67, 83, 104] and
commentary on the ethical use of GSV [10, 58].

Street view imagery has been used in attempts to characterize
short-term processes, such as counting public pedestrians [22, 110]
and alcohol consumption [29]. However, the temporal variability
of GSV, averaging 7 years on a controlled, short-route surveying
study [66], means it is unsuited for capturing short-term, real-time
or near real-time phenomena related to groups. Audit works at
FAccT have shown the insuitability of GSV and similar technologies
for measuring abstract concepts like ’livability’ [5], particularly
when human annotators are involved [111].

We qualify DSI-producing technologies as those that produce
spatially representative data at a frequency sufficient to capture
short-term phenomena including people and their behaviors. DSI-
producing technologies include networks of static traffic cameras [34,
97] and collections of mobile cameras ("dashcams"), either on pri-
vate [42, 45] or public [90, 93] fleets. The sensing capability of
a DSI-producing technology can be evaluated quantitatively as
the fraction of all possible space-time pairs with some number of
images. DSI can be deployed to fingerprint phenomena at very
high granularity [42]. As an example, DSI permits the continuous
monitoring of foot traffic patterns on a local sidewalk network at
15-minute increments [42].

In the following, we provide background on the key privacy
concepts we apply for our analysis of DSI. To account for the com-
plexity of privacy vulnerabilities in DSI, we ground our analysis
along three core concepts: inferential models, group privacy, and
contextual integrity (CI).

3.2 The Inferential Power of Vision Models
Ascendant inferential capabilities of AI models, particularly com-
puter vision models, pose a significant threat to group privacy in
DSI. AI’s capacity to draw inferences enables the extraction of
specific information of interest without directly collecting it. Com-
puter vision AI ‘makes sense’ of a sea of visual data [15] by draw-
ing inferences from it: vision models in robotics [23], self-driving
vehicles [61], and emotion recognition systems [55] analyze the
semantics of images and videos—millions of which are generated
daily across different digital socio-technical systems, including the
DSI. AI inferences present significant challenges to conceptions of
privacy, both in theory and in data protection practice. The privacy
conceptions most susceptible to erosion by AI’s inferential power
are likely those grounded exclusively in categorical distinctions –
such as classifying data as sensitive or non-sensitive – while at
the same time uncritically accepting AI-generated inferences as
inherently valid [37]. Critical data scientists, particularly members
of the FAccT community, have demonstrated the adverse impacts
of invalid inferential models, especially due to biased misrepre-
sentations that result in improper and unfair predictive descrip-
tions of individuals they cannot understand, correct, or control
(e.g., [36, 38, 49, 51, 98, 105, 106]).

Although blurring may prevent the processing of facial data
from individuals, such approaches do not fully protect against the
inferential power of computer vision models in identifying group-
relevant attributes. DSI serve both as a training ground for model
development and as a deployment environment for trained models.
Inferential models can leverage the semantics inscribed in urban
centers, buildings, and public squares, which manifest in corre-
sponding scripts of activities, behaviors, and roles. People may
gather for protests in public squares, work in specialized buildings
such as hospitals or construction sites, or prepare to engage in reli-
gious practices outside designated spaces such as temples, churches,
synagogues, or mosques. Models can detect such environmental
cues and infer sensitive information about facially obfuscated indi-
viduals by analyzing group membership proxies such as clothing,
accessories, and behaviors. Computer vision models effectively an-
alyze visual data, enabling the inference of clothing types, styles,
and the presence of accessories such as bags, hats, glasses, and jew-
elry [18, 26]. This capability facilitates real-time identification of
individuals belonging to specific groups, including demonstrators,
religious congregations, or professionals (e.g., doctors and nurses),
based on distinctive attire and accessories. Even when individuals
do not explicitly display group affiliation through their own cloth-
ing or accessories, their physical proximity to those who do can
result in their association with the group—a phenomenon often
referred to as the “lookalike” effect [89]. In public spaces, computer
vision models can also infer protected attributes such as gender
through pose estimation [63], or physical and mental disabilities
through proxies such as wheelchair or white cane use [92]. When
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deployed on the DSI, AI’s purported inferential power generates
unprecedented privacy challenges, turning public spaces into are-
nas for real-time, automated meaning-making that facial or body
obfuscation alone cannot prevent.

3.3 Privacy as Appropriate Information Flow vs.
Privacy as Preference

In motivating our choice to utilize the contextual integrity frame-
work in our analysis of information flows in DSI, we now detail
two prominent takes on privacy: privacy defined by group prefer-
ences (aligning with the theory of group privacy [100]), and privacy
defined by appropriate information flows (aligning with the frame-
work of contextual integrity [80]).

3.3.1 Group Privacy. Group privacy has been the subject of schol-
arly discussion since the late 1990s, when researchers began ex-
amining how new information technologies classify individuals
according to shared attributes rather than treating them as isolated
subjects. In his prescient work, Vedder [108] introduced the con-
cept of “categorical privacy” to address how data mining techniques
lead to the “deindividualization of the person,” where judgments
about individuals are based on group characteristics rather than
individual merits. This early Dutch work on group privacy empha-
sized that privacy concerns extend beyond individual data subjects
to entire classes of people, anticipating the challenges posed by
modern big data analytics.

Building on this foundation, Taylor et al. [100] define group
privacy as the collective ability of a group to control its personal
and shared information. In practice, this involves protecting both
individuals’ information within the group and safeguarding shared
information pertaining to the collective entity itself. This definition
recognizes that groups, as distinct entities, have privacy interests
beyond those of individual members, considering the shared norms
and values that shape collective privacy practices [40].

Bloustein and Pallone [17] further developed the concept of
group privacy as protecting confidential information shared among
two or more individuals against external parties. They outline the
“right to huddle,” referring to a group’s ability to gather and commu-
nicate confidentially within their own boundaries, enabling groups
to maintain trust, collaboration, and collective decision-making
without undue external surveillance or interference. Within our
paper, we specifically focus on normative groups observable in DSI,
which we discuss in detail in Table 2.

Loi and Christen [70] distinguish between two concepts of group
privacy: “what happens in Vegas stays in Vegas” privacy, concern-
ing confidential information shared within a group, and “inferential
privacy,” dealing with inferences about groups defined by shared
features. Our pentest results directly implicate this second form of
privacy, showing how readily group memberships can be inferred
from seemingly anonymized DSI data. Mantelero [73] further ar-
gues that in the context of big data analytics, privacy and data
protection should be considered collective rights rather than purely
individual ones.

van der Sloot [107] explores whether groups should have a right
to protect their group interest in privacy, noting that while privacy
rights have historically focused on individuals, contemporary tech-
nological paradigms like big data present threats that materialize at

group levels rather than individual ones. As Asgarinia [7] argues,
the traditional focus on individual privacy rights fails to address the
vulnerabilities of “clustered groups” designed by algorithms, where
information about the group can be used for harmful purposes even
when individual members remain anonymous. These perspectives
highlight the inadequacy of individual-focused privacy frameworks
in addressing collective privacy challenges posed by modern data
analytics.

As our penetration test demonstrated, traditional approaches
to privacy that focus on individual anonymization fail to prevent
group-based privacy violations in DSI. While individual privacy
frameworks might emphasize control and consent, they prove inad-
equate in addressing the collective, inferential privacy challenges
posed by dense spatial-temporal imagery and AI analysis. This lim-
itation points to the need for a more holistic framework that can
address both individual and group privacy concerns in the context
of DSI.

3.3.2 Contextual Integrity (CI). The inferential reality of computer
vision AI models and real-time DSI produce privacy vulnerabil-
ities for groups in public spaces. For the purposes of our work,
Nissenbaum’s theory of Privacy as Contextual Integrity (CI) helps
distinguish legitimate from illegitimate information flows accord-
ing to contextual norms for such groups [27]. Drawing on social
theory, social philosophy, and law, CI conceives of social life as
comprising distinct social domains or contexts, such as commerce,
education, finance, healthcare, civic life, family, and friends [80]. A
CI context is ultimately defined by its ends, aims, or goals, which
further determine its role in society at large, as well as its values,
be it equality, justice, or individual autonomy, among others. As
such, in a healthcare context, for example, the goal or aim is to cure
and prevent illness, alleviate pain, and there is a commitment to
ethical values such as equity and patient autonomy. The precise
composition of ends and values may differ across societies, and may
even be open to political contestation, e.g., in an education context,
it is open to debate whether the goals are to enlighten or train, to
teach rote skills or encourage creativity, or to generate workers as
opposed to enable a responsible citizenry. CI shifts away from no-
tions of privacy as information control or secrecy, and conceives of
privacy as the appropriate flow of information: flow that conforms
with contextual informational norms. Contextual informational
norms define acceptable data practices and may range from implicit
and weak—social disapproval of friends betraying confidences—to
explicit and embodied—laws protecting journalists refusing to name
sources or requiring physicians to maintain the confidentiality of
health data. A complete statement of a contextual informational
norm provides values for five parameters: data subject, data sender
and data recipient (collectively referred to as actors), information
type (topic or attribute), and transmission principle (the conditions
under which information flows) [80–82].

Actors (subject, sender, recipient) are labeled according to con-
textual capacities or roles, such as physicians, educators, or political
figures. Information types are defined according to contextual on-
tologies, such as an educator’s reports about a student’s learning
progress in an educational context. Transmission principles are the
conditions or constraints under which a particular information type
flows from senders to recipients. Transmission principles include
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Table 2: Typology of Identifiable Groups

Group Type Description Examples
Self Organized* Groups formed voluntarily by members who share a common purpose,

set of values, or specific goals. These groups often emerge organically
through shared interests or collective aspirations, and function inde-
pendently of external mandates or authority.

Protesters organizing for a cause, local
community action groups, religious (i.e.
church or temple) groups.

Role-based* Groups composed of individuals acting within defined roles tied to
their social, professional, or communal responsibilities. Membership
is typically based on one’s job, function, or societal duty rather than
personal traits or voluntary affiliation.

Nurses, police, construction workers,
tourists, school children.

Clusters Spatially proximate groups of individuals who are temporarily assem-
bled or gathered in a shared physical location, oftenwithout preexisting
social connections or enduring relationships. Such groups are usually
context-dependent and formed by situational proximity rather than
shared purpose.

People waiting at a train station, indi-
viduals standing in line, commuters at
a crosswalk.

Attribute-based Groups organized around intrinsic, often immutable characteristics or
shared traits of individuals. Membership in these groups is typically
defined by demographics or identity markers, which may influence
societal perceptions.

Age groups (e.g., seniors, children),
gender-specific communities, racial or
ethnic groups, individuals with disabili-
ties.

* Indicates normative groups.

confidentiality, reciprocity, consent or mandated by law, among
others. CI (and therefore privacy) is achieved or preserved if all
information flows within a particular context align with entrenched
informational norms. Hence, to determine the appropriateness of
an information flow, one must determine all five parameters char-
acterizing such flow.

Unlike privacy-as-preference approaches, which focus primarily
on individual control and consent, contextual integrity offers a
more comprehensive framework for analyzing the group privacy
harms revealed in our penetration test. CI enables us to evaluate
the appropriateness of information flows in DSI by considering not
just who is depicted, but how that imagery is collected, processed,
and shared within specific contexts. This makes CI particularly
suited to addressing the complex privacy challenges posed by DSI,
where individual de-identification proves insufficient to protect
group privacy. In the following section, we apply the CI framework
to demarcate appropriate and inappropriate information flows in
DSI based on our empirical findings.

4 APPLYING CI: DEMARCATING
INFORMATION FLOWS IN DSI

Motivated by the group identifiability risks posed in commercial
DSI data [30, 69], even under intense de-identification, we provide
recommendations rooted in a more holistic approach. Under the
contextual integrity framework [13, 80], information flows consist
of five components: a subject, a sender, a recipient, an information
type(s), and a transmission principle. In applying the CI framework,
we dissect information flows within DSI and outline the typical
values assigned to each of the framework’s five components.

The subjects in DSI are groups of pedestrians. We delineate the
typology of identifiable groups in DSI in Table 2. In many cases, the
sender is the data provider. While a vehicle driver is also complicit
in the act of the data capture, it is the data provider who makes the
decision of when to take an image, how many images to take, and

how many images to upload for downstream transfer. Alternatively,
an adversarial machine learning model may also assume the role
of data provider if it sends its generated outputs to a recipient.
Subsequent analysis, such as drawing inferences on top of a given
dataset, create a novel information flow, and typically involve a
new sender, such as an academic researcher or organization.

The recipient is variable. In most research projects that use
DSI to date, the recipient is a research group. DSI can also have
commercial uses, in which case the recipient is a private company, or
a public sector agency. In DSI, information types are photographs
with attached geospatial telemetry data. This combination creates a
record of a group’s (or group member’s) location and the time they
were situated there. DSI involves a transmission principle where
the subjects are not required to give consent and have no right to
revoke the transmission unless they preempt the information flow
via requesting an obfuscation of their appearance in the dataset.5
As we demonstrate in Figure 4, the contextual integrity framework
provides a structured approach to evaluate whether information
flows in DSI respect privacy norms by examining the complete
five-parameter tuple rather than isolated elements.

4.1 An Inappropriate Data Flow in DSI
According to CI [81], data flows that breach socially accepted norms
are considered ’inappropriate.’ DSI, in combination with automated
image retrieval through algorithmic methods (described in Table 1),
radically disrupts many contextual information norms, similar to
the advent of big data technologies [68].

As an extension of our penetration test, we consider food delivery
workers as a data subject. Prior to the introduction of street view
and DSI technologies, encounters of food delivery workers and
authorities in urban environments were ephemeral. Records of
5Google supports identifiable content blurring in Street View [1], but not removal.
The European Union’s GDPR framework advances the right to removal through its
articulation of the “right to be forgotten.” [88].
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Figure 4: Contextual Integrity Analysis of a DSI Information Flow. Changing a single parameter in an information flow can
transform it from appropriate (green,↷) to inappropriate (red,↷). Contextual integrity requires evaluating fully specified
information flows to avoid ambiguous cases (blue,↷).

food delivery were noticed by the local community or public, in
journalism, media, and writing, or within individually distributed
photographs. In these settings, food vendors could reasonably react
to the presence of authority, and communicate in person.

In this context, we conceptualize the city as the recipient (or ad-
versary) of the data, with the data provider acting as the sender. The
data itself consists of images enriched with computational meta-
data, including precise latitude and longitude coordinates, as well
as the exact date and time of capture. Crucially, this transmission is
sufficient to track a vendor’s activities over time or issue fines for
operating without a license. The underlying transmission principle
assumes that vendors cannot revoke the transfer of this data, nor
are data providers required to inform them that they have been
recorded.

A proponent of DSI surveillance might argue that DSI providers
must give the police persistent access to food vendors’ vending
locations and movement throughout the city upon request. While
this information flow may, at face value, appear morally justifiable,
it causes direct privacy harms to food vendors. Such surveillance
exposes vendors to risks of increased fines, job loss, or even the
inability to continue their work, threatening their livelihood and
way of life. This impact is particularly severe for undocumented
immigrants, for whom food vending is not only a direct lifeline to
sustain their families [74]. Disrupting this flow has moral implica-
tions such as economic survival, access to low-cost food for others,
and respecting the right to work without unnecessary or harmful
interference.

4.2 Inappropriate Flows in Other Groups
We highlight examples of inappropriate information flows that
arise as DSI technologies become more pervasive. These examples,
some of which are illustrated in our dataset (Figure 1), offer a
glimpse into the many ways DSI and inferential models can violate
established privacy norms, posing risks to the interests and values
of individuals and groups in public spaces. Using CI, we trace the
following components of each information flow: (1) the subject,
(2) the sender, (3) the recipient, (4) the information type(s), and

(5) the transmission principle. We specifically locate groups in the
DSI imagery that pose contextual integrity harms from merely
being present in a geo-temporally tagged image. That is, there are
documented, real-world instances of a group being targeted based
on their public situation in space and time. Below we describe
several complete flows for groups from the typology, involving
plausible harms to those groups (this information is also presented
in a table in the appendix Table 2).

Protesters and demonstrators: Protesters’ meeting locations and
times, captured in geo-tagged images by DSI providers, may be
surreptitiously shared with political groups opposed to their cause.
This information flow enables adversarial groups to target and
disrupt peaceful assemblies, undermining the protesters’ right to
organize and express dissent. The resulting harm includes expo-
sure to retaliation, suppression of free speech, and the erosion of
democratic principles.Workers and employees: In professional set-
tings, shift patterns of nurses inferred from DSI images captured
outside healthcare facilities could be sold to exploitative employers
or staffing agencies seeking to take advantage of their availability.
Such data flows enable adversaries to target nurses with aggressive
recruitment tactics, pressure them into accepting poorly compen-
sated shifts at inconvenient hours, or manipulate them into working
under unsafe or undesirable conditions. This undermines nurses’
autonomy in the workplace and their ability to make independent
decisions about their labor. Pedestrians: Geo-tagged imagery of peo-
ple gathered at busy crosswalks during peak hours may be sold
by predatory advertisers seeking to exploit behavioral patterns.
For example, advertisers might use this data to push high-pressure
marketing campaigns for products like payday loans or fast food,
directly targeting the commuters’ mobile devices in certain loca-
tions or interactive billboards. Religious groups: Muslims or Hasidic
Jews, photographed in locations perceived as incongruent with
their practices (e.g., near entertainment districts), risk having these
images and their associated metadata shared with hate groups, po-
tentially exposing them to targeted harassment or discrimination.
This flow facilitates targeted harassment, stigmatization, and even
violence against the group, violating societal norms of religious
freedom.
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4.3 Appropriate Data Flows in DSI
While many data flows enabled by DSI can lead to privacy vio-
lations, this technology also has beneficial uses, and privacy can
simultaneously be protected when contextual norms are respected.
We briefly outline two examples of appropriate information flows
that align with societal expectations and provide public benefit.

Urban planning for pedestrians: City planners can use DSI to
study pedestrian movement patterns at crosswalks and intersec-
tions to optimize traffic signal timing and improve infrastructure.
Transit authorities can analyze DSI, showing commuter congre-
gation patterns at bus stops and train stations to adjust service
frequency and capacity.

Crisis support for homeless: Non-governmental organizations re-
ceive DSI to study the temporal movement of encampments. This
allows crisis teams to provide on-demand support to those commu-
nities in need.

Figure 4 illustrates how contextual integrity operates in the sce-
nario described throughout this analysis. The center pathway rep-
resents an appropriate flow: academic researchers sharing macro-
level vending patterns with health authorities under duty-based
principles. However, altering a single parameter, such as changing
the recipient to law enforcement or modifying the information type
to real-time movements, transforms the flow into an inappropriate
one that violates privacy norms or an ambiguous one. The trans-
mission principle outlines conditions under which data is obtained,
used and reused, for example, the same vending location data that
enables public health planning becomes problematic when made
publicly accessible without restrictions.

These examples demonstrate how DSI can be deployed ethically
when the information flow of DSI and its inferences are fully speci-
fied according to CI, as well as when: (1) The purpose serves a clear
public benefit, (2) Usage is limited to the legitimate use purpose, (3)
Access is restricted to appropriate and previously agreed parties,
(4) Affected groups are given agency in how their information is
collected and used, (5) Focus is restricted to those groups by limiting
inferrable information.

The distinction between appropriate and inappropriate informa-
tion flows hinges not only on the type of data collected or who the
data subject is, but on the full specification of the flow across all
contextual integrity parameters. To ensure DSI technologies are
used responsibly, robust safeguards and ethical guidelines must be
implemented to protect privacy while enabling beneficial applica-
tions.

5 DISCUSSION & CONCLUDING REMARKS
We conclude by returning to the targeted surveillance of mobile
food vendors in New York City. Combined with findings from our
penetration test, we demonstrated that DSI can effectively be used
to identify contextual information about group distributions and
facilitate harm against group members. The object detection model
generated (photograph, place, time) tuples for tens of thousands of
food trucks from any given set of images. At present, the most real-
istic threat model for these outputs is largely curation. Authorities,
however, with additional information on food truck congregations
and outlying locations, can ramp up targeting in those areas, likely
resulting in increased fines and summonses [99].

5.1 Issue of Reducing Privacy to Anonymity
This work challenges the assumption that anonymizing individ-
uals within DSI sufficiently protects privacy. Through contextual
integrity analysis, we identify group vulnerabilities created by in-
ferential model development, illustrated in Table S2. Despite being
promoted as effective protection against privacy harms [25, 75],
anonymity fails against AI’s inferential capabilities. Our penetration
test shows facial blurring provides no protection for food delivery
workers against adversaries analyzing group membership. Authori-
ties accessing DSI could organize targeted enforcement leading to
loss of income, imprisonment, and other negative consequences.

The increasing density of street imagery, combined with ad-
vances in image retrieval techniques, makes it possible to cir-
cumvent anonymity in practice. As Barocas and Nissenbaum [12]
explains: “Even where strong guarantees of anonymity can be
achieved, common applications of big data undermine the values
that anonymity traditionally protected. Even when individuals are
not ‘identifiable,’ they may still be ‘reachable’ and subject to conse-
quential inferences and predictions made on that basis.” Anonymity
alone is insufficient to safeguard against the broader harms en-
abled by DSI and inferential AI models. CI’s theory of privacy
does not deem all information flows involving ’sensitive’ data as
inappropriate. Instead, it emphasizes the need to evaluate fully de-
fined information flows, which include the subject, sender, receiver,
information type, and transmission principle [96]. This nuanced
approach ensures that privacy judgments are context-specific and
grounded in the norms governing the particular scenario. For exam-
ple, a research or citizen advocacy group with access to the same
New York City food delivery worker distribution, specifically tied to
the use of that data for a legitimate purpose—such as surveying the
state of food delivery in the city—would likely not be considered an
inappropriate information flow. The primary use of DSI in this ex-
ample is positioned as delivering social benefits, such as enhancing
city planning and improving citizen safety through the understand-
ing of group behaviors. Given these intended benefits, CI is the
chosen privacy framework to evaluate and guide the responsible
use of such DSI datasets. Full removal of all traces of human activity
in DSI, such as by blocking all humans, their attachments, and their
vehicles, would undermine the utility of these tools.

5.2 DSI’s Threat to Public Space Itself
Beyond harms to specific groups identified in our penetration test,
contextual integrity theory highlights a fundamental concern: DSI
threatens the nature and value of public space itself as a social
resource [72, 107]. Public spaces have historically functioned as
domains where contextual norms allow for spontaneity, economic
opportunity, and democratic participation—values now threatened
by surveillance infrastructures.

For food vendors and delivery workers in our study, this trans-
formation is particularly consequential. What historically served as
accessible venues for entrepreneurship—street corners and public
thoroughfares—become sites of enforcement vulnerability when
continuously documented through DSI. As our penetration test
demonstrates, the ability to track food vendors’ locations and move-
ment patterns fundamentally alters the social contract that has
governed public space use. When vendors’ presence in a particular
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location becomes algorithmically flagged (as shown in Figure 2),
"perfect enforcement" becomes a possibility. Unlike before, where
food vendors in New York City were able to establish themselves
gradually, eventually gaining sufficient community support for
advocacy groups to campaign effectively for policy reforms [94].

Similarly, for protesters, religious communities, and other groups
identified in our typology (Table 2), DSI fundamentally reconstructs
public space from a domain of relative freedom to one of persistent
visibility. As Ben Green asserts in The Smart Enough City, the un-
fettered use of technologies like DSI are moving society towards
a state where to avoid being tracked, you must take the quixotic
step of opting out of public space [53]. The chilling effect on public
assembly, worship, or everyday activities represents not merely a
privacy harm to these groups, but a diminishment of public space’s
societal value. This perspective suggests that CI can help us under-
stand how DSI may alter the implicit social agreements governing
public spaces. Our findings indicate that the increasing presence of
DSI, combined with AI analysis capabilities, could shift what Lane
et al. [68] describe as "reasonable expectations" of contextual pri-
vacy in public spaces. As our food vendor case study suggests, these
changes may disproportionately affect vulnerable groups who rely
on public spaces for essential activities.

5.3 Recommendations
Motivated by the penetration test and the theoretical group pri-
vacy framework under contextual integrity, we suggest establishing
responsible data practices particularly directed at research institu-
tions and DSI providers. Additionally, we advocate for more nuance
in technical approaches to privacy protection in DSI.

Require DSI dataset usage approvals. We call academic institu-
tions to establish oversight bodies, similar to the Research Ethics
Board proposed in the Menlo Report [11], to evaluate the ethical
implications of research involving DSI datasets, particularly when
such work falls outside the traditional scope of Institutional Review
Boards (IRBs). Twelve years after the Menlo Report, we notice that
our own institution lacks provisions for ethical review outside of
research that deals directly with human subjects. In fact, prior work
that utilizes DSI has been deemed IRB exempt, even when studying
an innately societal phenomenon like police deployments [45]. As
DSI and other sensitive datasets that depict individuals without
their notice or consent are increasingly shared with researchers, we
recommend that universities apply greater scrutiny to the projects
that use them.

Establishing DSI data usage norms and promises. As DSI imagery
becomes more widely available and the cost of associated analytics
continues to decline (see our list of potential algorithmic group
identification methods in Table 1), companies that provide access to
these datasets should take responsibility for ensuring their ethical
use by researchers, governments, and corporations. Unconditional
sharing, without legal repercussions, will inevitably cause privacy
harm to groups. We propose that DSI providers adopt a more prac-
tical approach to ensure that data sharing is restricted solely to
legitimate purposes. Sharing and reuse should only occur under a
new transmission principle: purpose-limited, privacy risk-assessed,

and with usage and reuse documented. To help achieve this, re-
searchers working with DSI need to develop frameworks, databases,
and a centralized system to track use agreements and ensure ac-
countability in the sharing process. This system could be established
as a “Data Use Agreement Database” where each use case is logged
with respect to its purpose, risk assessment, and compliance with
privacy protections.

Study Societal Norms. A crucial aspect of understanding proper
information flows in DSI involves examining societal expectations
regarding the depiction and inferrability of groups in such datasets,
in line with work studying the public perception of DSI-producing
technologies like CCTV [76], dashcams [8, 54], and smart glasses
[64]. To acquire this knowledge, researchers should conduct fac-
torial vignette studies [4] to build evidence that helps demarcate
appropriate and inappropriate flows [19] in this novel technology.
We propose research that puts a strong focus on potential privacy
harms to groups.

Develop contextual obfuscation tools for DSI. There is a pressing
need for more nuanced privacy protection tools tailored to DSI. As
our pentest demonstrates, good faith privacy protections like facial
de-identification are insufficient in protecting group privacy and, in
certain instances, individual privacy too. A more robust approach
such as blurring entire bodies and vehicles within a DSI frame
may offer a short-term solution, but it falls short in two important
respects. First, they substantially reduce the image’s visual quality
and utility. Second, they do not go far enough, as other surrounding
factors, like body attachments and color information from blurred
rectangles, allow for contextual identification (see Table S1). In
Figure S1, we show how full-body blurring reduces DSI frames’
visual quality and utility, while still leaking indicators permitting
the inference of a farmer’s market event happening. Further, other
objects not attached to people can pose privacy threats to groups.
This is shown in the supplement in Figure 2, where we document
how inferences of food trucks, despite the blurring of license plates,
pose similar privacy risks to food vendors.

In summary, we argue that image blurring techniques must move
beyond generic object suppression and begin to treat privacy as
a matter of contextually appropriate information flow. This re-
quires the development of contextually aware obfuscation tools [20].
Rather than indiscriminately blurring objects, such tools should
assess what information about individuals, or groups, might be in-
ferred from contextual cues, and adapt the level of de-identification
accordingly.

5.3.1 Future Work. In our work, we assume that an adversary is
human. However, in contexts where fully automated enforcement
targeting a group is implemented, it is imperative to evaluate the
performance of leading Vision-Language Models (VLMs) in tasks
such as de-identifying and clustering groups. This profiling could
yield critical insights into the capabilities and limitations of auto-
mated systems in enforcing group-based surveillance or interven-
tions. Further, there is a need for downstream downstream efforts
in academia that promote proactive ethical decision-making in re-
search, especially when working with DSI and other data streams
that enable group-level measurement and identification, such as
cell phone mobility data.
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A SUPPLEMENTAL FIGURES

Figure S1: An example of a DSI image processed by Nexar’s
current pedestrian obfuscation algorithm, showing that
pedestrians’ entire bodies and faces are obscured by a blurred
rectangular box. While individual identities are rendered
nearly impossible to infer, environmental cues still allow for
the inference of the scene being a farmer’s market.

Figure S2: An example of group membership inference, even
under full-body pedestrian obfuscation. Due to the high-
visibility vest worn by this NYPD traffic officer, a group mem-
bership inference can be made solely from neon-green color,
black pants, and situation on the corner of a traffic intersec-
tion.
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Figure S3: Chloropleth map of the census tracts of NYC,
colored by number of dashcam images acquired in a tract.
Counts can be referenced in the accompanying frequency
histogram.
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B FURTHER DETAILS ON ATTACK TOOL
IMPLEMENTATIONS

B.1 Experimental Design
We design two experiments to demonstrate the privacy threats that
commercially standard DSI imagery can pose to groups when com-
bined with image retrieval and processing using machine learning
(ML).

B.1.1 Sourcing DSI. We developed software to systematically ex-
tract dashcam images, organizing them by date and capture location.
Between August 11, 2023, and January 10, 2024, we collect a total of
25,232,608 images, ensuring comprehensive geographic and tempo-
ral coverage.6 Throughout the sampling period, the data provider
maintained an assertion that sampled imagery was driven by (1)
crafting a representative sample and (2) replacing stale imagery
with fresh imagery. An important and key limitation of this dataset
is that we can not independently verify that images were randomly
sampled from the network of cameras, nor can we access statistics
about the members of the camera network. We only have access to
downstream imagery.

To illustrate the temporal density of the dashcam dataset, we
group the images into 15-minute intervals that encompass all of the
times that the scraper was fully operational. This produces 6,144
intervals. Out of these intervals, only 4, produce no new imagery;
when investigating, we find that this corresponds to the clocks
being set back an hour at the end of daylight savings time, on
November 5 2023. The mean 15-minute interval produces 3,444 new
images, across an area 350.3 square miles (for reference, New York
City and its water areas encompass about 469 square miles).7

We offer an important caveat regarding the rigor of our data val-
idation and training process. Our objective is investigatory rather
than focused on developing a highly accurate model. Several rea-
sons inform this approach: primarily, achieving high accuracy
would likely necessitate the use of crowdsourced human anno-
tators [45], whom we are unwilling to expose to sensitive imagery.
Second, our core goal is to demonstrate that group privacy threats
are both real and present in DSI data. For this purpose, somewhat
imprecise distributions are sufficient to support our findings.

B.1.2 Crafting Data. We query approximately 500,000 randomly-
sampled images with Cambrian-13B, a leading open-source vision
language model [102], in 2.3 days, asking the model for each image,
’Does this image show a food truck?’. Of our subset, 2,903 are in-
ferred positive, and 557,602 are inferred negative.We then randomly
sample 2,000 images from the set of predicted positive images for
human annotation. Two authors distributed the labeling process
among themselves. We randomly sample 50,000 images from the
set of predicted negative images to use as background images in
our model. Then, from this set of 52,000 images, we craft a 60-20-20
training-validation-test split; we will use these splits in training a
6We provide additional context regarding our sampling process, which was notably
complex. On October 1, 2024, the data provider overhauled the API used for download-
ing frames and metadata, rendering our tool inoperable. We adapted to these changes
and resumed data collection on October 20, 2024. Alongside the API overhaul, the data
provider announced a reduction in the daily volume of uploaded imagery, attributing
the change to operating cost constraints.
7Here, we calculate the area spanned by all images in a 15-minute interval by computing
the convex hull of the image subset.

more lightweight object detection model downstream in the pene-
tration test.

B.1.3 Data Validation. Cambrian-13B is a time and compute-
intensive model; we require a RTX A6000 GPU with 48GB of ram to
load and infer images with the model, and inference takes around
2 seconds per image. That said, it has empirically useful zero-shot
accuracy. We evaluate Cambrian’s ability to classify images as con-
taining a food truck. To evaluate the precision of Cambrian on this
task, we randomly sample 2000 images from the set of images clas-
sified positive, and manually annotate them. Of these 2000 images,
1496 contain food trucks (true positives), and 645 do not (false posi-
tives), yielding a true positive rate (TPR) of 0.70. For false positives,
we manually annotate ’decoys’ in the image, or objects that we
infer Cambrian mistook for a food truck 8. To evaluate the recall
of Cambrian on this task, we randomly sample 200 images from
the set of images classified negative, and manually annotate them.
Of these 200 images, 3 depict food trucks, yielding a false negative
rate (FNR) of 0.015 9. This seems small, but the FNR will magnify
at the scale of our dataset; we estimate that Cambrian-13B missed
377,136 images with food trucks. Nonetheless, Cambrian is effective
at demarcating positives and negatives; effectively, an image that
Cambrian predicts as having a food truck will depict a food truck
70% of the time, and an image that Cambrian predicts as not having
a food truck will have a food truck only 1.5% of the time.

B.1.4 Model Validation. The trained model fits well to the
manually-labeled positive images from Cambrian. Figure S4 shows
the Receiver Operating Characteristic (ROC) and Precision-Recall
(PR) curves for the most performant decoy-enabled model and most
performance decoy-disabled model, as evaluated on the test set.
Both models achieve an average precision (AP) of 0.78. As the decoy-
enabled model achieves higher AUC (0.96 vs. 0.94), we select it for
inference on the entire dataset, or "deployment".

B.1.5 Lightweight Object Detection Models. We train You-Only-
Look-Once (YOLO, specifically YOLOv11 [62]) object detection
models on our crafted dataset to induce the capability to identify
group members in the entire set of dashcam images. We use the
this architecture as it is a standard and principled tool used for
object detection tasks in urban scenes ([45], [42], [95]). We train
one model per object of interest, and report standard performance
metrics from the data splits described in the previous section.

8False positives detected by Cambrian stem from two sources. Visual Confusions:
Objects that look like food trucks, such as NYC dining sheds with LED signs. Language
Confusion: Trucks featuring food images that lead to the incorrect assumption they
are food trucks.
9It is worth noting that two of the three of these images are partially or almost fully
blocked by an full-body obfuscated pedestrian
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Figure S4: Standard performance curves for our food truck
object detection model.

C TAXONOMY OF DE-IDENTIFICATION IN DSI
Burdon et al. [20] identify four key failures in the standard de-
identification approach of blurring faces, license plates, and other
identifiable objects: false negatives, false positives, the ’Streisand
effect,’ and contextual identification. False negatives and false posi-
tives are common concepts in the machine learning literature, re-
ferring to instances where de-identification fails to blur identifiable
objects (false negatives) or unnecessarily obscures non-identifiable
objects (false positives).

False positives do not necessarily raise privacy concerns, and
more so impact the quality of the product’s imagery. We introduce
a new failure mode that emerges from considering group privacy,
instead of only the privacy of individuals. We call this failure mode
‘group membership inference.’ In this failure mode, a collection
of de-identified objects of the same type can be clustered using
computational methods, leaking the privacy guarantees of the de-
identification. We offer a concrete example to illustrate this point:
consider construction workers, who frequently wear high-visibility

green vests. Even with the most stringent de-identification method,
blurring the entire pedestrian body, a clustering algorithm could
detect and group these vests. This would effectively compromise the
privacy guarantees for the group of construction workers, despite
individual de-identification. We summarize DSI’s de-identification
failure modes in Table S1.
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Mode of Failure Description of object de-identification issue
False Negatives System fails to accurately detect and blur features of an object before images

are made publicly available.
False Positives System detects and blurs an object which is not required to be blurred.
The "Streisand" Effect System blurs/blocks an object, and the act of blurring paradoxically draws

attention to the object which is intended to be concealed.
Contextual Identification System accurately detects and blurs/redacts features, but the object is identifi-

able from contextual indicators.

Membership inference System blurs, blocks or de-identifies several objects of the same class in a
visually-similar fashion, allowing for clusters to be generated that leak privacy
and enable group membership inference.

Table S1: De-identification failure modes in dense street imagery. The top segment of the table is inherited from Burdon et al.
[20].

D EXAMPLES OF GROUP-BASED PRIVACY
VIOLATIONS IN DSI UNDER CI

Protesters
Information:Meeting locations and times (geo-tagged).
Recipients: Political groups opposed to the protester’s cause.
Transmission Principle: Information about meeting locations and times is shared outside the original context of trusted
participants and disseminated to opposition political groups, violating expectations of confidentiality and purpose limitation.
Harms: Retaliation, disruption of assemblies, suppression of free speech.
Nurses
Information: Shift patterns derived from DSI near healthcare facilities.
Recipients:Malicious employers or staffing agencies.
Transmission Principle: Shift pattern data is aggregated and shared with malicious employers or staffing agencies without
the consent of the individuals, violating principles of data minimization and appropriate recipient access.
Harms: Exploitation of labor patterns, unsafe working conditions, reduced autonomy.
Commuters
Information: Behavioral patterns at busy crosswalks during peak hours.
Recipients: Predatory advertisers.
Transmission Principle: Behavioral patterns shared with predatory advertisers violates expectations of anonymity and
proportionality in the collection and use of public data.
Harms: Exploitation through targeted marketing (e.g., payday loans, fast food).
Religious groups
Information: Images and metadata in cultural or religious locations.
Recipients: Hate groups.
Transmission Principle: Sensitive imagery andmetadata from religious locations shared with hate groups violate principles
of contextual sensitivity, trust, and non-maleficence in handling sensitive personal data.
Harms: Harassment, stigmatization, violence, violation of religious freedoms.

Table S2: Examples of Group-Based Privacy Violations in DSI under CI
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